REFERENCES

Abrahams, A., Schlegel, R. W., Smit, A. J., 2021. Variation and Change of Upwelling Dynamics Detected in the World’s Eastern Boundary Upwelling Systems. Frontiers in Marine Science, 8, 626411. https://doi.org/10.3389/fmars.2021.626411

Álvarez, I., Lorenzo, M., DeCastro, M., Gomez-Gesteira, M., 2017. Coastal upwelling trends under future warming scenarios from the CORDEX project along the Galician coast (NW Iberian Peninsula). International Journal of Climatology 37 (8), 3427-3438. https://doi.org/10.1002/joc.4927

Álvarez-Salgado, X.A., Borges, A.V., Figueiras, F.G., Chou, L., 2010. Iberian margin: the Rías. In: Liu, K.-K., Atkinson, L., Quiñones, R., Talaue–McManus, L. (Eds.), Carbon and Nutrient Fluxes in Continental Margins: A Global Synthesis, IGBP Book Series. Springer, Berlin, pp. 103–120. 

Alvarez-Salgado, X. A. et al., 2008. Renewal time and the impact of harmful algal blooms on the extensive mussel raft culture of the Iberian coastal upwelling system (SW Europe) Harmful Algae 7 (2008) 849–855 https://doi.org/10.1016/J.HAL.2008.04.007

Aranguren-Gassis M, Garcia-Martin EM, Kitidis V., 2015a. Satellite estimates of net community production indicate predominance of net autotrophy in the Atlantic Ocean. Remote Sensing of Environment 164, 254-269. https://doi.10.1016/j.rse.2015.03.017

Arístegui, J., Barton, E.D., Álvarez-Salgado, X.A., Santos, A.M.P., Figueiras, F.G., Kifani, S., Hernández-León, S., Mason, E., Machu, E., Demarcq, H., 2009. Sub-regional ecosystem variability in the canary current upwelling. Prog. Oceanogr. 83, 33–48. https://doi.org/10.1016/j.pocean.2009.07.031

Arístegui, J., et al., 2004. Oceanography and fisheries of the canary current/iberian region of the eastern North Atlantic. In: The Sea, Vol. 14, edited by A. R. Robinson and K. H. Brink ISBN 0–674. https://www.researchgate.net/publication/39703868_Chapter_23_oceanography_and_fisheries_of_the_Canary_currentIberian_region_of_the_eastern_North_Atlantic_18aE

Bakun, A., 1973. Coastal Upwelling Indices, West Coast of North America, 1946–71; NOM Tech. Rep. NMFS SSRF-671; Scientific Publications Office: Seattle, WA, USA; 103p. https://www.arlis.org/docs/vol1/NMFS/1973/34252465.pdf

Bakun, A., 1990. Global climate change and intensification of coastal ocean upwelling. Science 247, 198–201. http://doi.org/10.1126/science.247.4939.198

Baumann, K.H., Andruleit, H., Bockel, B., Geisen, M., Kinkel, H., 2005. The significance of extant coccolithophores as indicators of ocean water masses, surface water temperature, and paleoproductivity: a review. Paläontologische Zeitschrift 79 (1), 93–112. https://epic.awi.de/id/eprint/11233/1/Bau2004d.pdf

Beca-Carretero, P.P., Otero J., Land, P.E. Land, Groom S., Álvarez-Salgado X.A., 2019. Seasonal and inter-annual variability of net primary production in the NW Iberian margin (1998–2016) in relation to wind stress and sea surface temperature. Progress in Oceanography 178, 102135, https://doi.org/10.1016/j.pocean.2019.102135

Behrenfeld, M. J., Falkowski, P. G., 1997. A consumer’s guide to phytoplankton primary productivity models. Limnology and Oceanography, 42 (7), 1479–1491. https://doi.org/10.4319/lo.1997.42.7.1479 

Benazzouz, A., Mordane, S., Orbi, A., Chagdali, M., Hilmi, K., Atillah, A., et al., 2014. An improved coastal upwelling index from sea surface temperature using satellite-based approach – The case of the Canary Current upwelling system. Continental Shelf Research 81, 38–54. https://doi.org/10.1016/j.csr.2014.03.012 

Bender, M., Grande, K., Johnson, K., Marra, J., Williams, P. J. LeB., Sieburth, J., et al., 1987. A comparison of four methods for determining planktonic community production. Limnology and Oceanography, 32 (5), 1085–1098. https://doi.org/10.4319/lo.1987.32.5.1085

Bindoff, N.L., W.W.L. Cheung, J.G. Kairo, J. Arístegui, V.A. Guinder, R. Hallberg, N. Hilmi, N. Jiao, M.S. Karim, L. Levin, S. O’Donoghue, S.R. Purca Cuicapusa, B. Rinkevich, T. Suga, A. Tagliabue, and P. Williamson, 2019: Changing Ocean, Marine Ecosystems, and Dependent Communities. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate [H.- O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N.M. Weyer (eds.)]. 

Bode., A., Álvarez, M., Ruíz-Villarre, M., M. Varela, M.M., 2019. Changes in phytoplankton production and upwelling intensity off A Coruña (NW Spain) for the last 28 years, Ocean Dynamics (2019) 69 :861–873 https://doi.org/10.1007/s10236-019-01278-y

Borges, A.V., Frankignoulle, M., 2002. Distribution of surface carbon dioxide and air-sea exchange in the upwelling system off the Galician coast. Global Biogeochem. Cycles 16. https://doi.org/10.1029/2000GB001385

Borges, A.V., Delille, B., Frankignoulle, M., 2005. Budgeting sinks and sources of CO2 in the coastal ocean: Diversity of ecosystems counts. Geophys. Res. Lett. 32, L14601. https://doi.org/10.1029/2005GL023053

Bouman, H. et al., 2018. Photosynthesis-irradiance parameters of marine phytoplankton: Synthesis of a global data set. Earth System Science Data 10, 251-266. https://doi.org/10.5194/essd-10-251-2018

Bouman, H., et al., 2017. A global dataset of photosynthesis-irradiance parameters for marine phytoplankton. PANGAEA, https://doi.org/10.1594/PANGAEA.874087

Brewin, R.J.W., Dall'Olmo, G., Pardo, S., van Dongen-Vogels, V. and Boss, E.S., 2016. Underway spectrophotometry along the Atlantic Meridional Transect reveals high performance in satellite chlorophyll retrievals. Remote Sensing of Environment 183, 82-97. https://doi.org/10.1016/j.rse.2016.05.005

Brewin, R.J.W., Sathyendranath, S., Müller, D., Brockmann, C., Deschamps, P.-Y, Devred, E, Doerffer, R, Fomferra, N, Franz, B, Grant, M, Groom, S, Horseman, A, Hu, C, Krasemann, H, Lee, ZP, Maritorena, S, Mélin, F, Peters, M, Platt, T, Regner, P, Smyth, T, Steinmetz, F, Swinton, J Werdell, J, White, 2015. The Ocean Colour Climate Change Initiative: III. A round-robin comparison on in-water bio-optical algorithms. Remote Sensing of Environment 162, 271-294 http://hdl.handle.net/10871/40544

Britten, G. L., Primeau, F. W., 2016. Biome-specific scaling of ocean productivity, temperature, and carbon export efficiency. Geophysical Research Letters, 43 (10), 5210–5216 https://doi.org/10.1002/2016gl068778

Cai, W.-J., Xu, Y.-Y., Feely, R. A., Wanninkhof, R., Jönsson, B., Alin, S. R., et al., 2020. Controls on surface water carbonate chemistry along North American ocean margins. Nature Communications, 11(1), 2691 https://doi.org/10.1038/s41467-020-16530-z

Campbell, A.M., Racault, M.-F., Goult, S., Laurenson, 2020. A. Cholera Risk: A Machine Learning Approach Applied to Essential Climate Variables. Int. J. Environ. Res. Public Health 17, 9378. https://doi.org/10.3390/ijerph17249378

Cereja, R., Brotas, V., Cruz, J.P.C., Rodrigues, M., Brito, A.C., 2021. Tidal and Physicochemical Effects on Phytoplankton Community Variability at Tagus Estuary (Portugal) Front. Mar. Sci., doi.org/10.3389/fmars.2021.675699

Chavez, F. P., Messié, M., & Pennington, J. T., 2011. Marine Primary Production in Relation to Climate Variability and Change. Annual Review of Marine Science 3 (1), 227–260. https://doi.org/10.1146/annurev.marine.010908.163917

Chen, A., Borges, A., 2009. Reconciling opposing views on carbon cycling in the coastal ocean: Continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2. Deep-Sea Res. II 56, 578–590 https://doi.org/10.1016/j.dsr2.2009.01.001

Ciavatta, S., Brewin, R.J.W., Skakala, J., Polimene, L., De Mora, L., Artioli, Y., and Allen, J.I., 2018. Assimilation of Ocean-Color Plankton Functional Types to Improve Marine Ecosystem Simulations. Journal of Geophysical Research-Oceans 123, 834-854 https://doi.org/10.1002/2017JC013490

Ciavatta, S., Kay, S., Saux-Picart, S., Butenschon, M., Allen, J.I., 2016. Decadal reanalysis of biogeochemical indicators and fluxes in the North West European shelf-sea ecosystem. Journal of Geophysical Research-Oceans 121, 1824-1845 https://doi.org/10.1002/2015JC011496

Clark, D.R., Widdicombe, C.E., Rees, A.P., Malcolm, E., Woodward, S., 2016. The significance of nitrogen regeneration for new production within a filament of the Mauritanian upwelling system. Biogeosciences 13, 2873–2888 http://dx.doi.org/10. 5194/bg-13-2873-2016

Dall'Olmo, G., Mork, KA., 2014. Carbon export by small particles in the Norwegian Sea. Geophysical Research Letters. 41, 2921–2927 https://doi.org/10.1002/2014GL059244

Dall'Olmo, G., Dingle, J., Polimene, L., Brewin, R.J.W., Claustre, H., 2016. Substantial energy input to the mesopelagic ecosystem from the seasonal mixed-layer pump. Nature geoscience, 9 (11), p. 820. http://dx.doi.org/10.1038/ngeo2818

Dunne, J. P., Sarmiento, J. L., Gnanadesikan, A., 2007. A synthesis of global particle export from the surface ocean and cycling through the ocean interior and on the seafloor. Global Biogeochemical Cycles, 21(4), n/a-n/a. https://doi.org/10.1029/2006gb002907

 Evers-King, H., Martinez-Vicente, V., Brewin, R.J.W., Dall'Olmo, G., Hickman, A.E., Jackson, T., Kostadinov, T.S., Krasemann, H., Loisel, H., Röttgers, R., Roy, S., 2017. Validation and intercomparison of ocean color algorithms for estimating particulate organic carbon in the oceans. Frontiers in Marine Science 4, p. 251. https://doi.org/10.3389/fmars.2017.00251

Ferreira, A., Brotas, V., Palma, C., Borges, C., Brito, A. C., 2021 Assessing phytoplankton bloom phenology in upwelling-influenced regions using ocean colour remote sensing. Remote Sens. 13, 675. https://doi.org/10.3390/rs13040675

Fiuza, A., Macedo, M., Guerreiro, M., 1982. Climatological space and time variation of the Portuguese coastal upwelling. Oceanologica Acta 5, 31–40 https://archimer.ifremer.fr/doc/00120/23169/21014.pdf

Ford, D., Barciela, R., 2017. Global marine biogeochemical reanalyses assimilating two different sets of merged ocean colour products. Remote Sensing of Environment 203, 40-54. 

Fréon, P., Barange, M., Arístegui, J., 2009. Eastern Boundary Upwelling Ecosystems: Integrative and comparative approaches. Progress in Oceanography, 83 (1–4), 1–14. https://doi.org/10.1016/j.pocean.2009.08.001

Frischknecht, M., Münnich, M., Gruber, N., 2018. Origin, Transformation, and Fate: The Three-Dimensional Biological Pump in the California Current System. Journal of Geophysical Research: Oceans 123 (11), 7939–7962 https://doi.org/10.1029/2018jc013934

Frouin, R., Ramon, D., Boss, E., Jolivet, D., Compiègne, M., Tan, J., et al. 2018. Satellite Radiation Products for Ocean Biology and Biogeochemistry: Needs, State-of-the-Art, Gaps, Development Priorities, and Opportunities. Frontiers in Marine Science 5(3) https://doi.org/10.3389/fmars.2018.00003

Fuentes-Santos et al., 2021. Modeling the impact of climate change on mussel aquaculture in a coastal upwelling system: a critical assessment. Science of the Total Environment 775, 145020 https://doi.org/10.1016/j.scitotenv.2021.145020

Gago, J., Álvarez-Salgado, X.A., Gilcoto, M., Pérez, F.F., 2003. Assessing the fate of dissolved and suspended organic carbon in a coastal upwelling system (Ría de Vigo, NW Iberian Peninsula). Estuar. Coast. Shelf Sci. 56 (2) 271–279https://doi.org/10.1016/S0272-7714(02)00186-5

García-Reyes, M., Sydeman, W. J., Schoeman, D. S., Rykaczewski, R. R., Black, B. A., Smit, A. J., Bograd, S. J., 2015. Under Pressure: Climate Change, Upwelling, and Eastern Boundary Upwelling Ecosystems. Frontiers in Marine Science, 2, 109.https://doi.org/10.3389/fmars.2015.00109

Garrido, S. et al., 2008. Diet and feeding intensity of sardine Sardina pilchardus: correlation with satellite-derived chlorophyll data. Mar Ecol Prog Ser. 354, 245–256 https://doi.org/10.3354/meps07201

Gomez-Gesteira, M., Moreira, C., Alvarez, I., deCastro, M., 2006. Ekman transport along the Galician coast (northwest Spain) calculated from forecasted winds. J. Geophys. Res. 111, C10005 https://doi.org/10.1029/2005JC003331

Gómez-Letona M, Ramos AG, Coca J, Arístegui J., 2017. Trends in Primary Production in the Canary Current Upwelling System—A Regional Perspective Comparing Remote Sensing Models. Front. Mar. Sci. 4 (370) https://doi.org/10.3389/fmars.2017.00370

Graban S., Dall'Olmo G. Goult S., Sauzède R. 2020. Accurate deep-learning estimation of chlorophyll-a concentration from the spectral particulate beam-attenuation coefficient. Optics Express, https://doi.org/10.1364/OE.397863

Gregg, W.W., Friedrichs, M.a.M., Robinson, A.R., Rose, K.A., Schlitzer, R., Thompson, K.R., Doney, S.C., 2009. Skill assessment in ocean biological data assimilation. Journal of Marine Systems 76, 16-33 https://doi.org/10.1016/j.jmarsys.2008.05.006

Groom S, Sathyendranath S, Ban Y, Bernard S, Brewin R, Brotas V, Brockmann C, Chauhan P, Choi J-k, Chuprin A, Ciavatta S, Cipollini P, Donlon C, Franz B, He X, Hirata T, Jackson T, Kampel M, Krasemann H, Lavender S, Pardo-Martinez S, Melin F, Platt T, Santoleri R, Skakala J, Schaeffer B, Smith M, Steinmetz F, Valente A and Wang M, 2019. Satellite Ocean Color: Current Status and Future Perspective. Frontiers in Marine Science, 6 (485) https://doi.org/10.3389/fmars.2019.00485

Groom, S., Herut, B., Brenner, S., Zodiatis, G., Psarra, S., Kress, N., Krom, M.D., Law, C.S., Drakopoulus, P., 2005. Satellite-derived spatial and temporal biological variability in the Cyprus Eddy. Deep-Sea Res. II 52, 2990–3010. https://doi.org/10.1016/j.dsr2.2005.08.019

Groom S, Sathyendranath S, Ban Y, Bernard S, Brewin R, Brotas V, Brockmann C, Chauhan P, Choi J-k, Chuprin A, Ciavatta S, Cipollini P, Donlon C, Franz B, He X, Hirata T, Jackson T, Kampel M, Krasemann H, Lavender S, Pardo-Martinez S, Melin F, Platt T, Santoleri R, Skakala J, Schaeffer B, Smith M, Steinmetz F, Valente A, Wang M (2019). Satellite Ocean Color: Current Status and Future Perspective. Frontiers in Marine Science 6, 485 doi: 10.3389/fmars.2019.00485 

Groom, S., Herut, B., Brenner, S., Zodiatis, G., Psarra, S., Kress, N., Krom, M.D., Law, C.S., Drakopoulus, P., 2005. Satellite-derived spatial and temporal biological variability in the Cyprus Eddy. Deep-Sea Res. II 52, 2990–3010. 

Guerreiro, C. V., Baumann, K.-H., Brummer, G.-J. A., Valente, A., Fischer, G., Ziveri, P., Brotas, V. Stuut, J.-B. W., 2021. Carbonate fluxes by coccolithophore species between NW Africa and the Caribbean: implications for the biological carbon pump. Limnol. Oceanogr., 1–19, https://doi.org/10.1002/lno.11872

Guerreiro, C., Oliveira, A., De Stigter, H., Cachão, M., Sá, C., Borges, C., Cros, L., Quaresma, L., Santos, A.I., Fortuño, J.M., Rodrigues, A., 2013. Late winter coccolithophore bloom off central Portugal in response to river discharge and upwelling. Continental Shelf Research 59, 65 – 83 https://doi.org/10.1016/j.csr.2013.04.016

Guerreiro, C., Sá, C., De Stigter, H., Oliveira, A., Cachão, M., Borges, C., Cros, L., Quaresma, L., Santos, A.I., Fortuño, J.M., Rodrigues, A., 2014. Influence of the Nazaré Canyon, central Portuguese margin, on late winter coccolithophore assemblages. Deep Sea Re. II: Topical Studies in Oceanography 104, 335-358 https://doi.org/10.1016/j.dsr2.2013.09.011

Guerreiro, C.V., Baumann, K.-H., Brummer, G.-J. A., Fischer, G., Korte, L. F., Sá, C. and Stuut, J.- B. W., 2019. Transatlantic gradients in calcifying phytoplankton (coccolithophore) fluxes, Progress in Oceanography 176, 102140 https://doi.org/10.1016/j.pocean.2019.102140.

Haarsma, R. J., Roberts, M. J., Vidale, P. L., Senior, C. A., Bellucci, A., Bao, Q., et al., 2016. High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6. Geoscientific Model Development, 9 (11), 4185–4208 https://doi.org/10.5194/gmd-9-4185-2016

Hahm, H., , T.S. Rhee, H. Kim, C.J. Jang, Y.S Kim, J. Parke, 2019. An observation of primary production enhanced by coastal upwelling in the southwest East/Japan Sea. Journal of Marine Systems 19, 30–37 https://doi.org/10.1016/j.jmarsys.2019.03.005

Hammond, M.L., Beaulieu, C., Sahu, S.K., Henson, S.A., 2017. Assessing trends and uncertainties in satellite-era ocean chlorophyll using space-time modeling. Global Biogeochemical Cycles 31, 1103-1117 https://doi.org/10.1002/2016GB005600

Henson, S. A., Sanders, R., Madsen, E., Morris, P. J., Moigne, F. L., Quartly, G. D., 2011. A reduced estimate of the strength of the ocean’s biological carbon pump. Geophysical Research Letters, 38 (4), n/a-n/a. https://doi.org/10.1029/2011gl046735

Henson, S.A., Sarmiento, J.L., Dunne, J.P., Bopp, L., Lima, I., Doney, S.C., John, J., Beaulieu, C., 2010. Detection of anthropogenic climate change in satellite records of ocean chlorophyll and productivity. Biogeosciences 7, 621-640https://doi.org/10.5194/bg-7-621-2010

Hewitt, H. T., Copsey, D., Culverwell, I. D., Harris, C. M., Hill, R. S. R., Keen, A. B., et al., 2011. Design and implementation of the infrastructure of HadGEM3: the next-generation Met Office climate modelling system. Geoscientific Model Development 4(2), 223–253 https://doi.org/10.5194/gmd-4-223-2011

Honjo, S., Manganini, S. J., Krishfield, R. A., Francois, R., 2008. Particulate organic carbon fluxes to the ocean interior and factors controlling the biological pump: A synthesis of global sediment trap programs since 1983. Progress in Oceanography 76(3), 217–285 https://doi.org/10.1016/j.pocean.2007.11.003

Hosegood, P. J., Nightingale, P. D., Rees, A. P., Widdicombe, C. E., Woodward, E. M. S., Clark, D. R., Torres, R. J., 2017. Nutrient pumping by submesoscale circulations in the mauritanian upwelling system. Progress in Oceanography 159, 223–236. https://doi.org/10.1016/j.pocean.2017.10.004

Joint, I., Groom, S., Chou, L., Wollast, R., Tilstone, G.H., Figueiras, F.G., Loijens, M., Smyth, T.J., 2002. The response of phytoplankton production to periodic upwelling and relaxation events at the Iberian shelf break. Journal of Marine Systems. 32, 219-238 https://doi.org/10.1016/S0924-7963(02)00037-4

Jönsson, B. F., & Salisbury, J. E., 2016. Episodicity in phytoplankton dynamics in a coastal region. Geophysical Research Letters 43 (11), 5821–5828 https://doi.org/10.1002/2016gl068683

Jönsson, B. F., Salisbury, J. E., Mahadevan, A., 2009. Extending the use and interpretation of ocean satellite data using Lagrangian modelling. International Journal of Remote Sensing 30 (13), 3331–3341. https://doi.org/10.1080/01431160802558758

Jönsson, B. F., Salisbury, J. E., Mahadevan, A., 2011. Large variability in continental shelf production of phytoplankton carbon revealed by satellite. Biogeosciences 8 (5), 1213–1223. https://doi.org/10.5194/bg-8-1213-2011

Kerr, T., Clark, J. R., Fileman, E. S., Widdicombe, C. E., Pugeault, N., 2020. Collaborative Deep Learning Models to Handle Class Imbalance in FlowCam Plankton Imagery. IEEE Access, vol. 8, pp. 170013-170032 https://doi.org/10.1109/ACCESS.2020.3022242

Kitidis V, Tilstone GH, Serret P, Smyth TJ, Torres R, Robinson C., 2014. Oxygen photolysis in the Mauritanian upwelling: Implications for net community production. Limnology and Oceanography, 59 (2), 299-310 https://doi.org/10.4319/lo.2014.59.2.0299

Korte, L.F., Brummer, G.-J.A., van der Does, M., Guerreiro, C.V., Hennekam, R., van Hateren, J.A., Jong, D., Munday, C.I., Schouten, S., Stuut, J.-B.W., 2017. Downward particle fluxes of biogenic matter and Saharan dust across the equatorial North Atlantic. Atmos. Chem. Phys. 17, 6023–6040 https://doi.org/10.5194/acp-17-6023-2017

Kulk, G., Platt, T., Dingle, J., Jackson, T., Jönsson, B. F., Bouman, H. A., et al., 2020. Primary Production, an Index of Climate Change in the Ocean: Satellite-Based Estimates over Two Decades. Remote Sensing, 12 (5), 826 https://doi.org/10.3390/rs12050826

Land, P.E., Findlay, H.S., Shutler, J.D., Ashton, I.G.C., Holding, T., Grouazel, A., Girard-Ardhuin, F., Reul, N., Piolle, J.-F., Chapron, B., 2019. Optimum satellite remote sensing of the marine carbonate system using empirical algorithms in the global ocean, the Greater Caribbean, the Amazon Plume and the Bay of Bengal. Remote Sensing of Environment 235, 111469 https://doi.org/10.1016/j.rse.2019.111469

Labarta,. U., Fernández-Reiriz M.J., 2019. The Galician mussel industry: Innovation and changes in the last forty years, Ocean and Coastal Management 167, 208–218 https://doi.org/10.1016/j.ocecoaman.2018.10.012

Lachkar, Z., Gruber, N., 2012. A comparative study of biological production in eastern boundary upwelling systems using an artificial neural network. Biogeosciences 9, 293–308 https://doi.org/10.5194/bg-9-293-2012

Land, PE, Trevor C. Bailey, TC, Taberner, M, Pardo, S, Sathyendranath, S, Zenouz, KN, Brammall, V, Shutler, JD, Quartly, GD, 2018. A statistical modeling framework for characterising uncertainty in large datasets: application to ocean colour. Remote Sens. 10, 695 https://doi.org/10.3390/rs10050695

Landschützer, P., Gruber, N., Bakker, D.C.E., Schuster, U., Nakaoka, S.i., Payne, M.R., Sasse, T.P., Zeng, J., 2013. A neural network-based estimate of the seasonal to inter-annual variability of the Atlantic Ocean carbon sink. Biogeosciences, 10, 7793-7815 https://doi.org/10.5194/bg-10-7793-2013

Laruelle, G., Dürr, H., Slomp, P., Borges, A., 2010. Evaluation of sinks and sources of CO2 in the global coastal ocean using a spatially–explicit typology of estuaries and continental shelves. Geophys. Res. Lett. 37, L15607https://doi.org/10.1029/2010GL043691

Lassoued, J., Babarro, J. M., Padín, X., Comeau, L. A., Bejaoui, N., Perez, F. F., 2019. Behavioural and eco-physiological responses of the mussel Mytilus galloprovincialis to acidification and distinct feeding regimes. Marine Ecology Progress Series 626, 97–108 https://doi.org/10.3354/meps13075

Lellouche, J.-M., Greiner, E., Galloudec, O. L., Garric, G., Regnier, C., Drevillon, M., et al., 2018. Recent updates to the Copernicus Marine Service global ocean monitoring and forecasting real-time 1/12º high-resolution system. Ocean Science 14 (5), 1093–1126 https://doi.org/10.5194/os-14-1093-2018

Lobanova, P., Tilstone, G.H., Bashmachnikov, I., Brotas, V., 2018. Accuracy assessment of primary production models with and without photoinhibition using Ocean Colour Climate Change Initiative data in the North East Atlantic Ocean. Remote Sens. 10(7), 1116 https://doi.org/10.3390/rs10071116

Martínez-Vicente, V., Evers-King, H., Roy, S., Kostadinov, T.S., Tarran, A., Graff, J.R., Brewin, R.J., Dall'Olmo, G., Jackson, T., Hickman, A.E., Röttgers, R. 2017. Intercomparison of ocean color algorithms for picophytoplankton carbon in the ocean. Frontiers in Marine Science 4, p.378, https://doi.org/10.3389/fmars.2017.00378

Madec, G., Team, N. S. (n.d.). NEMO ocean engine. Zenodo https://doi.org/10.5281/zenodo.1464816 

Marra. J., 2009. Net and gross productivity: weighing in with 14C, Aquat Microb Ecol. 56, 123–131https://doi.org/10.3354/ame01306

Martínez-Vicente, V., Evers-King, H., Roy, S., Kostadinov, T.S., Tarran, .A., Graff, J.R., Brewin, R.J., Dall'Olmo, G., Jackson, T., Hickman, A.E. and Röttgers, R., 2017. Intercomparison of ocean color algorithms for picophytoplankton carbon in the ocean. Frontiers in Marine Science 4, p.378 https://doi.org/10.3389/fmars.2017.00378

Mélin, F., 2016. Impact of inter-mission differences and drifts on chlorophyll-a trend estimates. International Journal of Remote Sensing, 37 (10), 2233-2251 https://doi.org/10.1080/01431161.2016.1168949

Mélin, F., Vantrepotte, V., Chuprin, A., Grant, M., Jackson, T. and Sathyendranath, S., 2017. Assessing the fitness-for-purpose of satellite multi-mission ocean color climate data records: A protocol applied to OC-CCI chlorophyll-a data. Remote Sensing of Environment 203, 139-151 https://doi.org/10.1016/j.rse.2017.03.039

Messie, M., Chavez, F.P., 2015. Seasonal regulation of primary production in eastern boundary upwelling systems. Prog. Oceanogr. 134, 1–18 https://doi.org/10.1016/j.pocean.2014.10.011

Milliman, J. D., 1993. Production and accumulation of calcium carbonate in the ocean: budget of a non-steady state, Global Biogeochem. Cy. 7, 927–957 https://doi.org/10.1029/93GB02524

Mohrholz, V. et al., 2014. Cross shelf hydrographic and hydrochemical conditions and their short term variability at the northern Benguela during a normal upwelling season. Journal of Marine Systems 140, 92-110https://doi.org/10.1016/j.jmarsys.2014.04.019

Moita, M.T., Oliveira, P.B., Mendes, J.C., Palma, A.S., 2003. Distribution of chlorophyll a and Gymnodinium catenatum associated with coastal upwelling plumes off central Portugal. Acta Oecologica 24, S125–S132 https://doi.org/10.1016/S1146-609X(03)00011-0

Morel, A., 1991. Light and marine photosynthesis: a spectral model with geochemical and climatological implication. Prog. Oceanogr. 26, 263–306 https://doi.org/10.1016/0079-6611(91)90004-6

Nolasco, C., Oliveira, P.B., 2016. Toward predicting Dinophysis blooms off NW Iberia: A decade of events. Harmful Algae 53, 17-32, https://doi.org/10.1016/j.hal.2015.12.002

Nunes C, Moreno A, Garrido S, Silva AA and Azevedo M, 2019. SARDINHA2020: An ecosystem approach to sardine fisheries management. Front. Mar. Sci. Conference Abstract: XX Iberian Symposium on Marine Biology Studies (SIEBM XX) https://doi.org/10.3389/conf.fmars.2019.08.00128

Oliveira P.B., F.N. Amorim, J. Dubert, R. Nolasco, T. Moita, 2019. Phytoplankton distribution and physical processes off NW Iberia during two consecutive upwelling seasons. Continental Shelf Research 190, https://doi.org/10.1016/j.csr.2019.103987

Padin, X.A., A.Velo, F.F. Pérez, 2020. ARIOS: a database for ocean acidification assessment in the Iberian upwelling system (1976–2018) Earth Syst. Sci. Data 12, 2647–2663, https://doi.org/10.5194/essd-12-2647-2020

Pastor, M.V., Palter, J.B., Pelegrí, J.L., Dunne, J.P., 2013. Physical drivers of interannual chlorophyll variability in the eastern subtropical North Atlantic. J. Geophys. Res. Oceans 118, 3871–3886 https://doi.org/10.1002/jgrc.20254

Pitcher, G.C., Figueiras, F.G., Hickey, B.M, Moita, M.T., 2010. The physical oceanography of upwelling systems and the development of harmful algal blooms. Progress in Oceanography 85, 5-32 https://doi.org/10.1016/j.pocean.2010.02.002

Platt, T., Fuentes-Yaco, C., Frank, K.T., 2003. Spring algal bloom and larval fish survival. Nature 423, 398-399 https://doi.org/10.1038/423398b

Platt, T., Sathyendranath, S., 1988. Oceanic primary production: estimation by remote sensing at local and regional scales. Science 241, 1613–1620 https://doi.org/10.1126/science.241.4873.1613

Platt, T., Sathyendranath, S., 1999. Spatial structure of pelagic ecosystem processes in the global ocean. Ecosystems, 2(5), 384-394 https://doi.org/10.1007/s100219900088

Platt, T., Sathyendranath, S., 1993. Estimators of primary production for interpretation of remotely sensed data on ocean color. Journal of Geophysical Research: Oceans 98 (C8), 14561–14576. https://doi.org/10.1029/93jc01001

Platt, T., Caverhill, C., Sathyendranath, S., 1991. Basin-scale estimates of oceanic primary production by remote sensing: The North Atlantic. Journal of Geophysical Research: Oceans, 96 (C8), 15147–15159 https://doi.org/10.1029/91jc01118

Platt, T., Sathyendranath, S., Caverhill, C. M., Lewis, M. R., 1988. Ocean primary production and available light: further algorithms for remote sensing. Deep Sea Research Part A. Oceanographic Research Papers, 35(6), 855–879 https://doi.org/10.1016/0198-0149(88)90064-7

Relvas, P., Barton, E., Dubert, J., Oliveira, P.B., Peliz, A., da Silva, J., Santos, A.M.P., 2007. Physical oceanography of the western Iberia ecosystem: latest views and challenges. Prog. Oceanogr. 74 (2–3), 149–173 https://doi.org/10.1016/j.pocean.2007.04.021

Richardson, K., Bendtsen, J., Kragh, T., Mousing, E.A., 2016. Constraining the distribution of photosynthetic parameters in the Global Ocean. Frontiers in Marine Science 3, 269 https://doi.org/10.3389/fmars.2016.00269

Roberts, M., 2018. MOHC HadGEM3-GC31-HH model output prepared for CMIP6 HighResMIP (Version 20210201) [Data set]. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.445

Roberts, M. J., Baker, A., Blockley, E. W., Calvert, D., Coward, A., Hewitt, H. T., et al., 2019. Description of the resolution hierarchy of the global coupled HadGEM3-GC3.1 model as used in CMIP6 HighResMIP experiments. Geoscientific Model Development, 12 (12), 4999–5028. https://doi.org/10.5194/gmd-12-4999-2019

Rosón G., X.A. Álvarez–Salgado, F.F. Pérez, 1999. Carbon cycling in a large coastal embayment affected by wind–driven upwelling. Short–time–scale variability and spatial differences. Marine Ecology Progress Series 176, 215–230https://www.jstor.org/stable/24831885

Saba et al., 2011. An evaluation of ocean color model estimates of marine primary productivity in coastal and pelagic regions across the globe. Biogeosciences 8, 489–503 https://doi.org/10.5194/bg-8-489-2011

Sabine, C. L., Feely, R. A., Gruber, N., Key, R. M., Lee, K., Bullister, J. L., et al., 2004. The Oceanic Sink for Anthropogenic CO2. Science 305 (5682), 367–371 https://doi.org/10.1126/science.1097403

Salisbury, J. E., Jönsson, B. F., 2018. Rapid warming and salinity changes in the Gulf of Maine alter surface ocean carbonate parameters and hide ocean acidification. Biogeochemistry 141 (3), 401–418. https://doi.org/10.1007/s10533-018-0505-3

Santos, A.M.P., Nieblas, A-E., Verley, P., Teles-Machado, A., Bonhomeau, S., Lett, C., Garrido, S., Peliz, A., 2018. Sardine (Sardina pilchardus) larval dispersal in the Iberian upwelling system, using coupled biophysical techniques. Progress in Oceanography 162, 83-97 https://doi.org/10.1016/j.pocean.2018.02.011

Sathyendranath et al. inc Groom, 2019. An Ocean-Colour Time Series For Use In Climate Studies: The Experience Of The Ocean Colour Climate Change Initiative (OC-CCI). Sensors, 19 (19), 4285 https://doi.org/10.3390/s19194285

Sathyendranath, S., Brewin, R. J. W., Brockmann, C., Brotas, V., Calton, B., Chuprin, A., et al., 2019. An Ocean-Colour Time Series for Use in Climate Studies: The Experience of the Ocean- Colour Climate Change Initiative (OC-CCI). Sensors 19 (19), 4285 https://doi.org/10.3390/s19194285

Sathyendranath, S., Platt, T., Horne, E.P., Harrison, W.G., Ulloa, O., Outerbridge, R., Hoepffner, N., 1991. Estimation of new production in the ocean by compound remote sensing. Nature 353 (6340), p.129 https://doi.org/10.1038/353129a0

Saux-Picart, S., Sathyendranath, S., Dowell, M., Moore, T., Platt, T., 2014. Remote sensing of assimilation number for marine phytoplankton. Remote Sensing of Environment 146, pp.87-96 https://doi.org/10.1016/j.rse.2013.10.032

Sherman, K., O'Reilly, J., Belkin, I.M., Melrose, C., Friedland, K.D., 2011. The application of satellite remote sensing for assessing productivity in relation to fisheries yields of the world's large marine ecosystems. ICES J. Mar. Sci. 68 (4), 667-676https://doi.org/10.1093/icesjms/fsq177

Shillington, F.A., Reason, C.J.C., Duncombe Rae, C.M., Florenchie, P., Penven, P., 2006. Large scale physical variability of the Benguela Current Large Marine Ecosystem (BCLME), In Large Marine Ecosystems, Vol. 14, Edited by Shannon, V., Hempel, G., Malanotte-Rizzoli, P., Moloney, C., and Woods, J., pp. 47-67, Elsevier B.V. https://doi.org/10.1016/S1570-0461(06)80009-1

Shutler JD, Land PE, Piolle J-F, Woolf DK, Goddijn-Murphy L, Paul F, Girard-Ardhuin F, Chapron B, Donlon CJ, 2016.FluxEngine: a flexible processing system for calculating atmosphere-ocean carbon dioxide gas fluxes and climatologies. Journal of Atmospheric and Oceanic Technology, https://doi.org/10.1175/JTECH-D-14-00204.1

Siegel, D. A., Buesseler, K. O., Behrenfeld, M. J., Benitez-Nelson, C. R., Boss, E., Brzezinski, M. A., et al., 2016. Prediction of the Export and Fate of Global Ocean Net Primary Production: The EXPORTS Science Plan. Frontiers in Marine Science 3, 22. https://doi.org/10.3389/fmars.2016.00022

Silió-Calzada, A., Bricaud, A., Uitz, J., Gentili, B., 2008. Estimation of new primary production in the Benguela upwelling area, using ENVISAT satellite data and a model dependent on the phytoplankton community size structure. Journal of Geophysical Research, 113, C11023, https://doi.org/10.1029/2007JC004588

Silva A., Palma S., Oliveira P.B., Moita M.T., 2009. Composition and interannual variability of phytoplankton in a coastal upwelling region (Lisbon Bay, Portugal). Journal of Sea Research 62, 238-249 https://doi.org/10.1016/j.seares.2009.05.001

Skakala, J., Ford, D., Brewin, R.J.W., Mcewan, R., Kay, S., Taylor, B., De Mora, L., Ciavatta, S., 2018. The Assimilation of Phytoplankton Functional Types for Operational Forecasting in the Northwest European Shelf. Journal of Geophysical Research-Oceans 123, 5230-5247 https://doi.org/10.1029/2018JC014153

Smith, M. E., Robertson Lain, L., Bernard, S., 2018. An optimized Chlorophyll a switching algorithm for MERIS and OLCI in phytoplankton-dominated waters. Remote Sensing of Environment 215, 217-227 https://doi.org/10.1016/j.rse.2018.06.002

Smyth, T.J, S.B., Groom, D.G., Cummings and C.A., Llewellyn, 2002. Comparison of SeaWiFS bio-optical chlorophyll-a algorithms within the OMEX-II programme. Int. J. Remote Sens 23, 2321-2326 https://doi.org/10.1080/01431160110109624

Smyth, T.J., Tilstone, G.H., Groom, S.B., 2005. Integration of radiative transfer into satellite models of ocean primary production. J. Geophys. Res. Oceans 110, C10 https://doi.org/10.1029/2004JC002784

Sousa, M. C., Ribeiro, A., Des, M., Gomez-Gesteira, M., deCastro, M., Dias, J. M., 2020. NW Iberian Peninsula coastal upwelling future weakening: Competition between wind intensification and surface heating. Science of The Total Environment 703, 134808 https://doi.org/10.1016/j.scitotenv.2019.134808

Steinmetz, F., Ramon, D., 2018. Sentinel-2 MSI and Sentinel-3 OLCI consistent ocean colour products using POLYMER. In R.J. Frouin, & H. Murakami (Eds.), Remote Sensing of the Open and Coastal Ocean and Inland Water https://doi.org/10.1117/12.2500232

Steinmetz, F., Deschamps, P.Y., Ramon, D., 2011. Atmospheric correction in presence of sun glint: application to MERIS. Optics Express 19, 9783-9800 https://doi.org/10.1364/OE.19.009783

Stock, A., Subramaniam, A., Van Dijken, G.L., Wedding, L.M., Arrigo, K.M., Mills, M.M., Cameron, M.A, Micheli, F., 2020. Comparison of Cloud-Filling Algorithms for Marine Satellite Data. Remote Sens. 12 (3313) https://doi.org/10.3390/rs12203313

Teruzzi, A., Bolzon, G., Salon, S., Lazzari, P., Solidoro, C., Cossarini, G., 2018. Assimilation of coastal and open sea biogeochemical data to improve phytoplankton simulation in the Mediterranean Sea https://doi.org/10.1016/j.ocemod.2018.09.007

Testa G, Masotti I, Farías L, 2018. Temporal Variability in Net Primary Production in an Upwelling Area off Central Chile (36◦S). Front. Mar. Sci. 5 (179) https://doi.org/10.3389/fmars.2018.00179

Tilstone GH, Miller PI, Brewin R, Priede, I.G., 2014. Enhancement of primary production outside of the spring bloom in the North Atlantic identified by remote sensing of ocean colour and temperature. Remote Sensing of Environment 146, 77-86http://dx.doi.org/10.1016/j.rse.2013.04.021

Tilstone GH, Smyth TJ, Poulton A, Hutson R., 2009. Measured and remotely sensed estimates of  primary production in the Atlantic Ocean from 1998 to 2005. Deep Sea-Research II 56 (15), 918-930 https://doi.org/10.1016/j.dsr2.2008.10.034

Tilstone GH, Taylor B, Blondeau-Patissier D, Powell T, Groom SB, Rees AP, Lucas M., 2015. Comparison of new and primary production models using SeaWiFS data in contrasting hydrographic zones of the northern North Atlantic. Remote Sensing of Environment 156, 473-489, https://doi.org/10.1016/j.rse.2014.10.013

Tilstone, G.H., Land, P.E., 2019. Report on Development of a UK waters specific indicator from the OSPAR candidate indicator Production of Phytoplankton (FW2) – C7772. CEFAS, UK. 

Tilstone, G.H., Lange, P.K., Misra, A., Brewin, R.J.W., Cain, T., 2017. Microphytoplankton photosynthesis, primary production and potential export production in the Atlantic Ocean. Prog. Oceanogr. 158, 109-129 http://dx.doi.org/10.1016/j.pocean.2017.01.006

Tilstone, G.H., Pardo, Dall’Olmo, Brewin, Nencioli, Dessailly, Kwiatkowska, Casal, Donlon, 2021. Performance of Ocean Colour algorithms for Sentinel-3 OLCI, MODIS-Aqua and VIIRS in open-ocean waters of the Atlantic. Remote Sens. Env. 260 (112444) https://doi.org/10.1016/j.rse.2021.112444

Tilstone G.H., Xie Y, Robinson C, Serret P, Raitsos D, Powell T, Aranguren-Gassis M, Garcia-Martin EM, Kitidis V., 2015a. Satellite estimates of net community production indicate predominance of net autotrophy in the Atlantic Ocean. Remote Sensing of Environment 164, 254-269. https://doi.org/10.1016/j.rse.2015.03.017

Valente, A., Sathyendranath, S., Brotas, V., Groom, S., Grant, M., Taberner, M., Antoine, D., Arnone, R., Balch, W. M., Barker, K., Barlow, R., Bélanger, S., Berthon, J.-F., Beşiktepe, Ş., Brando, V., Canuti, E., Chavez, F., Claustre, H., Crout, R., Frouin, R., García-Soto, C., Gibb, S. W., Gould, R., Hooker, S., Kahru, M., Klein, H., Kratzer, S., Loisel, H., McKee, D., Mitchell, B. G., Moisan, T., Muller-Karger, F., O'Dowd, L., Ondrusek, M., Poulton, A. J., Repecaud, M., Smyth, T., Sosik, H. M., Twardowski, M., Voss, K., Werdell, J., Wernand, M., and Zibordi, G., 2016a. A compilation of global bio-optical in situ data for ocean-colour satellite applications, Earth Syst. Sci. Data 8, 235-252, https://doi.org/10.5194/essd-8-235-2016

Valente, A., Sathyendranath, S., Brotas, V., Groom, S., Grant, M., Taberner, M., Antoine, D., Arnone, R., Balch, W. M., Barker, K., Barlow, R., Bélanger, S., Berthon, J.-F., Beşiktepe, Ş., Brando, V., Canuti, E., Chavez, F., Claustre, H., Crout, R., Frouin, R., García-Soto, C., Gibb, S. W., Gould, R., Hooker, S., Kahru, M., Klein, H., Kratzer, S., Loisel, H., McKee, D., Mitchell, B. G., Moisan, T., Muller-Karger, F., O'Dowd, L., Ondrusek, M., Poulton, A. J., Repecaud, M., Smyth, T., Sosik, H. M., Twardowski, M., Voss, K., Werdell, J., Wernand, M., and Zibordi, G., 2016b. A compilation of global bio-optical in situ data for ocean-colour satellite applications. PANGAEA, https://doi.org/10.1594/PANGAEA.854832

Veiga-Malta T, Szalaj D, Angélico MM, Azevedo M et al., 2019. First representation of the trophic structure and functioning of the Portuguese continental shelf ecosystem: insights into the role of sardine. Mar Ecol Prog Ser 617-618, 323-340. https://doi.org/10.3354/meps12724

Verheye, H.M., Lamont, T., Huggett, J.A., Kreiner, A., Hampton, I., 2016. Plankton productivity of the Benguela Current Large Marine Ecosystem (BCLME). Environmental Development 17, 75-92. https://doi.org/10.1016/j.envdev.2015.07.011

Volk, T., Hoffert, M. I., 1985. Ocean Carbon Pumps: Analysis of Relative Strengths and Efficiencies in Ocean-Driven Atmospheric CO2 Changes. In The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present (pp. 99–110). American Geophysical Union (AGU). Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/GM032p0099

Waniek, J., Koeve, W., Prien, R.D., 2000. Trajectories of sinking particles and the catchment areas above sediment traps in the northeast Atlantic. J. Mar. Res. 58, 983–1006 https://doi.org/10.1357/002224000763485773

Wasmund N, Siegel H, Bohata K, Flohr A, Hansen A and Mohrholz V, 2016. Phytoplankton Stimulation in Frontal Regions of Benguela Upwelling Filaments by Internal Factors. Front. Mar. Sci. 3 (210) https://doi.org/10.3389/fmars.2016.00210

Westberry, T., Behrenfeld, M. J., Siegel, D. A., Boss, E., 2008. Carbon-based primary productivity modeling with vertically resolved photoacclimation. Global Biogeochemical Cycles 22, GB2024 https://doi.org/10.1029/2007gb003078

Willard J., X. Jia, S. Xu, M. Steinbach, and V. Kumar, 2020. Integrating Scientific Knowledge with Machine Learning for Engineering and Environmental Systems, arXiv:2003.04919 [physics, stat], http://arxiv.org/abs/2003.04919

Zwolinski JP, Oliveira PB, Quintino V, Stratoudakis Y, 2010. Sardine potential habitat and environmental forcing off western Portugal, ICES Journal of Marine Science 67 (8), 1553– 1564, https://doi.org/10.1093/icesjms/fsq068